ASec - Arcsecant (Inverse Secant)

Online calculator for calculating the angle to the secant

Arcsecant Calculator

Instructions

Enter the value of the secant (≤-1 or ≥1), select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arcsecant - Overview

Value Range

The arcsecant is only defined for certain values.

  • Domain: x ≤ -1 or x ≥ 1
  • Range: [0, π] excluding π/2, or [0°, 180°] excluding 90°
Arcsecant Function

Inverse secant, scale in radians

Definition

The arcsecant (arcsec, asec, or sec⁻¹) is the inverse function of the secant function.

\(\displaystyle y = \text{arcsec}(x) \Leftrightarrow \sec(y) = x \)

with \( |x| \geq 1 \) and \( y \in [0, \pi] \setminus \{\frac{\pi}{2}\} \)

Relationship

Relationship to arccosine:

\(\displaystyle \text{arcsec}(x) = \arccos\left(\frac{1}{x}\right) \)


Description of the Arcsecant

Fundamentals

The arcsecant (arcsec, asec, or sec⁻¹) is the inverse function of the secant function. It calculates the angle for a given secant value. The secant is the reciprocal of the cosine function.

Mathematical Definition:

\(\displaystyle y = \text{arcsec}(x) \)

means

\(\displaystyle \sec(y) = x \)

Understanding Secant

The secant is a trigonometric function that is the reciprocal of the cosine function. In a right triangle:

\(\displaystyle \sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{\text{Hypotenuse}}{\text{Adjacent side}} \)

Important: The secant is undefined when cos(α) = 0, which occurs at 90°, 270°, etc. (or π/2, 3π/2, etc. in radians).

Detailed Examples

Example 1: Calculate Secant Value

Given:

An angle α = 60° (or π/3 radians)

Calculating the secant:

\(\displaystyle \sec(60°) = \frac{1}{\cos(60°)} = \frac{1}{0.5} = 2 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \sec(\alpha) = 2 \)

In radians:

\(\displaystyle \alpha = \text{arcsec}(2) = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3} \approx 1.047 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha = 60° \)

Example 3: Using Triangle

Given:

A right triangle with:

  • Hypotenuse: c = 10
  • Adjacent side: b = 6

Calculation:

\(\displaystyle \sec(\alpha) = \frac{10}{6} \approx 1.667 \)

\(\displaystyle \alpha = \text{arcsec}(1.667) \approx 53.13° \)

Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \leq -1 \) or \( x \geq 1 \)
  • Range: \( y \in [0, \pi] \setminus \{\frac{\pi}{2}\} \) (radians) or \( [0°, 180°] \setminus \{90°\} \)
  • Discontinuity: Undefined at x = 0 and y = π/2
  • Reciprocal: \( \sec(x) = \frac{1}{\cos(x)} \)
  • Special values:
    • \( \text{arcsec}(1) = 0 \)
    • \( \text{arcsec}(2) = \frac{\pi}{3} = 60° \)
    • \( \text{arcsec}(-1) = \pi = 180° \)
    • \( \text{arcsec}(\sqrt{2}) = \frac{\pi}{4} = 45° \)
Practical Applications
  • Physics: Wave analysis and optics
  • Engineering: Structural mechanics
  • Astronomy: Calculating viewing angles
  • Navigation: Distance and position calculations
  • Surveying: Angle measurements
  • Computer graphics: 3D transformations
  • Cryptography: Mathematical algorithms
Relationships to Other Functions

Cosine relationship:

\(\displaystyle \sec(\alpha) = \frac{1}{\cos(\alpha)} \)

\(\displaystyle \cos(\alpha) = \frac{1}{\sec(\alpha)} \)

Arccosine relationship:

\(\displaystyle \text{arcsec}(x) = \arccos\left(\frac{1}{x}\right) \)

for \( |x| \geq 1 \)

Pythagorean Identity

\(\displaystyle 1 + \tan^2(\alpha) = \sec^2(\alpha) \)

This identity relates the secant to the tangent

Important Note

Domain restriction: The arcsecant is only defined for values where \( |x| \geq 1 \). For values between -1 and 1, the function is undefined because the cosine function (whose reciprocal is the secant) only produces values in the range [-1, 1].

Programming: Many programming languages do not have a built-in arcsecant function. It can be calculated using: asec(x) = acos(1/x).





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree