Tan - Calculate Tangent

Online calculator for calculating the tangent of an angle

Tangent Calculator

Instructions

Enter the angle whose tangent you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Tangent

Tangent - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π).

Note: The tangent is undefined at 90°, 270° (or π/2, 3π/2 in radians) where cos(α) = 0.

Tangent Function

Tangent, scale in radians

Definition in Triangle

The tangent of an angle α corresponds to the ratio of the opposite side to the adjacent side in a right triangle.

\(\displaystyle \tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{a}{b} = \frac{\sin(\alpha)}{\cos(\alpha)} \)

Tangent in Triangle
Important Values
  • \( \tan(0°) = 0 \)
  • \( \tan(30°) = \frac{1}{\sqrt{3}} \approx 0.577 \)
  • \( \tan(45°) = 1 \)
  • \( \tan(60°) = \sqrt{3} \approx 1.732 \)
  • \( \tan(90°) = \) undefined (∞)
  • \( \tan(180°) = 0 \)


Description of the Tangent

Fundamentals

The tangent is one of the fundamental trigonometric functions. In a right triangle, the tangent of an angle α is the ratio of the opposite side to the adjacent side.

Definition:

\(\displaystyle \tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{a}{b} \)

\(\displaystyle \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \)

Properties

The tangent function has several important properties:

  • Periodic: tan(α + 180°) = tan(α)
  • Odd function: tan(-α) = -tan(α)
  • Undefined: At 90° + n·180° (where cos(α) = 0)
  • Range: All real numbers (-∞, +∞)
  • Domain: All real numbers except 90° + n·180° (n integer)
Relationship to Other Functions

Tangent is related to other trigonometric functions:

\(\displaystyle \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \)

\(\displaystyle \tan(\alpha) = \frac{1}{\cot(\alpha)} \)

\(\displaystyle 1 + \tan^2(\alpha) = \sec^2(\alpha) \)

Detailed Examples

Example 1: Calculate Tangent

Given:

A right triangle with:

  • Opposite side (to α): \( a = 3 \text{ cm} \)
  • Adjacent side: \( b = 4 \text{ cm} \)

Calculation:

\(\displaystyle \tan(\alpha) = \frac{3}{4} = 0.75 \)

To find the angle: \( \alpha = \arctan(0.75) \approx 36.87° \)

Example 2: Known Angles

Important tangent values:

\( \tan(0°) \) = 0
\( \tan(30°) \) = \( \frac{1}{\sqrt{3}} \approx 0.577 \)
\( \tan(45°) \) = 1
\( \tan(60°) \) = \( \sqrt{3} \approx 1.732 \)
\( \tan(120°) \) = \( -\sqrt{3} \approx -1.732 \)
\( \tan(180°) \) = 0
Example 3: Practical Application

Task:

A road has an incline of 15°. How much does the road rise over a horizontal distance of 100 m?

Solution:

\(\displaystyle \text{Rise} = 100 \cdot \tan(15°) \approx 100 \cdot 0.268 = 26.8 \text{ m} \)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 180° or π (radians)
  • Symmetry: Odd function: tan(-α) = -tan(α)
  • Asymptotes: Vertical at 90°, 270°, ...
  • Zeros: At 0°, ±180°, ±360°, ...
  • Slope interpretation: tan(α) represents the slope of a line
  • Pythagorean identity: 1 + tan²(α) = sec²(α)
  • Addition formulas:
    • \( \tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} \)
Practical Applications
  • Engineering: Slope and gradient calculations
  • Architecture: Roof pitch and stair design
  • Navigation: Bearing and course calculations
  • Surveying: Height and distance measurements
  • Physics: Inclined plane problems
  • Civil engineering: Road and railway gradients
  • Computer graphics: Rotation and perspective
  • Trigonometry: Solving triangles
Important Note

The tangent function is undefined at angles where the cosine equals zero (90°, 270°, ... or π/2, 3π/2, ...). At these points, the function approaches positive or negative infinity. The tangent can be expressed as tan(α) = sin(α)/cos(α). Unlike sine and cosine, the tangent can take any real value from -∞ to +∞. The function has a period of 180° (or π radians), which is half the period of sine and cosine. The tangent is particularly useful for calculating slopes and gradients, as tan(α) directly gives the rise/run ratio. In the unit circle, tan(α) represents the length of the line segment from the point (1,0) to where the line through the origin at angle α intersects the vertical tangent line x = 1.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree