Radians to Degrees Calculator

Online calculator and formula for converting radians to degrees

Radians to Degrees Calculator

Instructions

Enter the angle in radians and click Calculate. The calculator automatically converts the value to degrees.

Input
Result
Degrees (°)

Conversion - Overview

What are Radians and Degrees?

Radians (rad) and Degrees (°) are two different units of measurement for angles.

  • Full circle in radians: 2π ≈ 6.283 rad
  • Full circle in degrees: 360°
Conversion Formula

The formula to convert radians to degrees:

\(\displaystyle \text{deg} = \frac{\text{rad} \cdot 180°}{\pi} \)

where π (Pi) ≈ 3.14159265359

Important Angle Values
Radians Degrees
0 rad
π/6 ≈ 0.524 rad 30°
π/4 ≈ 0.785 rad 45°
π/3 ≈ 1.047 rad 60°
π/2 ≈ 1.571 rad 90°
π ≈ 3.142 rad 180°
2π ≈ 6.283 rad 360°
Reverse Conversion

Converting degrees to radians:

\(\displaystyle \text{rad} = \frac{\text{deg} \cdot \pi}{180°} \)


Description of Converting Radians to Degrees

Fundamentals

Radians and degrees are two different units for measuring angles. Radians are commonly used in mathematics, physics, and engineering, while degrees are the most common unit in everyday life.

Definition of Degrees:

A degree is 1/360th of a full circle. This division comes from Babylonian mathematics and is based on the sexagesimal system.

\(\displaystyle 1° = \frac{\pi}{180°} \text{ rad} \approx 0.01745 \text{ rad} \)

Formula Derivation

A full circle equals 2π radians or 360°. This gives us the proportional equation:

\(\displaystyle 2\pi \text{ rad} = 360° \)

\(\displaystyle \pi \text{ rad} = 180° \)

\(\displaystyle 1 \text{ rad} = \frac{180°}{\pi} \)

By multiplying by the radian value, we get the conversion formula:

\(\displaystyle \text{deg} = \text{rad} \cdot \frac{180°}{\pi} \)

Detailed Examples

Example 1: π/2 rad to degrees

Given:

Angle = π/2 rad ≈ 1.571 rad

Calculation:

\(\displaystyle \text{deg} = \frac{\frac{\pi}{2} \cdot 180°}{\pi} = \frac{180°}{2} = 90° \)

Result: π/2 rad equals 90°

Example 2: 1 radian to degrees

Given:

Angle = 1 rad

Calculation:

\(\displaystyle \text{deg} = \frac{1 \cdot 180°}{\pi} \approx \frac{180°}{3.14159} \approx 57.2958° \)

Result: 1 rad equals approximately 57.3°

Example 3: 2π rad to degrees

Given:

Angle = 2π rad ≈ 6.283 rad (full circle)

Calculation:

\(\displaystyle \text{deg} = \frac{2\pi \cdot 180°}{\pi} = 2 \cdot 180° = 360° \)

Result: 2π rad equals 360° (full circle)

Example 4: π/4 rad to degrees

Given:

Angle = π/4 rad ≈ 0.785 rad

Calculation:

\(\displaystyle \text{deg} = \frac{\frac{\pi}{4} \cdot 180°}{\pi} = \frac{180°}{4} = 45° \)

Result: π/4 rad equals 45°

When to Use Degrees?
  • Everyday applications: Navigation, geodesy, cartography
  • Civil engineering: Angles of inclination, roof pitches
  • Surveying: Land surveying, angle measurements
  • Geography: Longitude and latitude
  • Astronomy: Celestial coordinates (partially)
  • Meteorology: Wind directions
  • Daily life: Compass, orientation, angle specifications
When to Use Radians?
  • Mathematics: Calculus, trigonometry, differential equations
  • Physics: Circular motion, rotational dynamics, waves
  • Engineering: Mechanics, electrical engineering
  • Computer graphics: 3D transformations, rotations
  • Programming: Mathematical functions (sin, cos, tan)
  • Robotics: Joint angles, motion control
  • Science: Precise calculations, research
Extended Conversion Table
Radians (exact) Radians (decimal) Degrees (°) Angle Type
0 0 Zero angle
π/6 ≈ 0.524 30° Acute angle
π/4 ≈ 0.785 45° Acute angle
π/3 ≈ 1.047 60° Acute angle
π/2 ≈ 1.571 90° Right angle
2π/3 ≈ 2.094 120° Obtuse angle
3π/4 ≈ 2.356 135° Obtuse angle
π ≈ 3.142 180° Straight angle
3π/2 ≈ 4.712 270° Reflex angle
≈ 6.283 360° Full angle
Important Note

Programming: Most programming languages (C, C++, Java, Python, JavaScript, etc.) return trigonometric functions in radians, not degrees. If you want to work with degrees, you must convert the result using this formula.

Calculators: Make sure your calculator is in degree mode (DEG) or radian mode (RAD). Wrong settings lead to incorrect results!

Relationship with Arc Length

Arc length from radians:

\(\displaystyle s = r \cdot \alpha \)

where s is the arc length, r is the radius, and α is the angle in radians

Arc length from degrees:

\(\displaystyle s = \frac{r \cdot \alpha \cdot \pi}{180°} \)

where α is the angle in degrees

Practical Tips
  • Memory aid: 1 radian ≈ 57.3° (exactly: 180°/π)
  • Quick calculation: For small angles, approximately: 1 rad ≈ 60°
  • Excel/Spreadsheets: Use the function =DEGREES(Radians)
  • Python: import math; degrees = math.degrees(radians)
  • JavaScript: degrees = radians * (180 / Math.PI)




IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree