ACsc - Arccosecant (Inverse Cosecant)

Online calculator for calculating the arc cosecant (inverse cosecant)

Arccosecant Calculator

Instructions

Enter the value of the cosecant (≤-1 or ≥1), select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arccosecant - Overview

Value Range

The arccosecant is only defined for certain values.

  • Domain: x ≤ -1 or x ≥ 1
  • Range: [-π/2, π/2] excluding 0, or [-90°, 90°] excluding 0°
Arccosecant Function

Inverse cosecant, scale in radians

Definition

The arccosecant (arccsc, acsc, or csc⁻¹) is the inverse function of the cosecant function.

\(\displaystyle y = \text{arccsc}(x) \Leftrightarrow \csc(y) = x \)

with \( |x| \geq 1 \) and \( y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\} \)

Relationship

Relationship to arcsine:

\(\displaystyle \text{arccsc}(x) = \arcsin\left(\frac{1}{x}\right) \)


Description of the Arccosecant

Fundamentals

The arccosecant (arccsc, acsc, or csc⁻¹) is the inverse function of the cosecant function. It calculates the angle for a given cosecant value. The cosecant is the reciprocal of the sine function.

Mathematical Definition:

\(\displaystyle y = \text{arccsc}(x) \)

means

\(\displaystyle \csc(y) = x \)

Understanding Cosecant

The cosecant is a trigonometric function that is the reciprocal of the sine function. In a right triangle:

\(\displaystyle \csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{\text{Hypotenuse}}{\text{Opposite side}} \)

Important: The cosecant is undefined when sin(α) = 0, which occurs at 0°, 180°, 360°, etc. (or 0, π, 2π, etc. in radians).

Detailed Examples

Example 1: Calculate Cosecant Value

Given:

An angle α = 30° (or π/6 radians)

Calculating the cosecant:

\(\displaystyle \csc(30°) = \frac{1}{\sin(30°)} = \frac{1}{0.5} = 2 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \csc(\alpha) = 2 \)

In radians:

\(\displaystyle \alpha = \text{arccsc}(2) = \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6} \approx 0.524 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha \approx 30° \)

Example 3: Using Triangle

Given:

A right triangle with:

  • Hypotenuse: c = 10
  • Opposite side: a = 6

Calculation:

\(\displaystyle \csc(\alpha) = \frac{10}{6} \approx 1.667 \)

\(\displaystyle \alpha = \text{arccsc}(1.667) \approx 36.87° \)

Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \leq -1 \) or \( x \geq 1 \)
  • Range: \( y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\} \) (radians) or \( [-90°, 90°] \setminus \{0°\} \)
  • Discontinuity: Undefined at x = 0
  • Reciprocal: \( \csc(x) = \frac{1}{\sin(x)} \)
  • Special values:
    • \( \text{arccsc}(1) = \frac{\pi}{2} = 90° \)
    • \( \text{arccsc}(2) = \frac{\pi}{6} = 30° \)
    • \( \text{arccsc}(-1) = -\frac{\pi}{2} = -90° \)
    • \( \text{arccsc}(\sqrt{2}) = \frac{\pi}{4} = 45° \)
Practical Applications
  • Physics: Wave mechanics and oscillations
  • Engineering: Structural analysis
  • Astronomy: Calculating celestial angles
  • Navigation: Position and direction calculations
  • Optics: Light refraction calculations
  • Signal processing: Amplitude analysis
  • Computer graphics: 3D rendering and projections
Relationships to Other Functions

Sine relationship:

\(\displaystyle \csc(\alpha) = \frac{1}{\sin(\alpha)} \)

\(\displaystyle \sin(\alpha) = \frac{1}{\csc(\alpha)} \)

Arcsine relationship:

\(\displaystyle \text{arccsc}(x) = \arcsin\left(\frac{1}{x}\right) \)

for \( |x| \geq 1 \)

Pythagorean Identity

\(\displaystyle 1 + \cot^2(\alpha) = \csc^2(\alpha) \)

This identity relates the cosecant to the cotangent

Important Note

Domain restriction: The arccosecant is only defined for values where \( |x| \geq 1 \). For values between -1 and 1, the function is undefined because the sine function (whose reciprocal is the cosecant) only produces values in the range [-1, 1].

Programming: Many programming languages do not have a built-in arccosecant function. It can be calculated using: acsc(x) = asin(1/x).





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree