ACos - Arccosine (Inverse Cosine)

Online calculator for calculating the angle to the cosine

Arccosine Calculator

Instructions

Enter the value of the cosine (between -1 and +1), select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arccosine - Overview

Value Range

The value of the argument must be between -1 and +1. The result is given in degrees (full circle = 360°) or radians (full circle = 2 · π).

Arccosine Function

Inverse cosine, scale in radians

Definition

The arccosine (Arccos or Acos) is the inverse function of the cosine function. It calculates the angle for a given cosine value.

\(\displaystyle y = \arccos(x) \Leftrightarrow \cos(y) = x \)

with \( x \in [-1, 1] \) and \( y \in [0, \pi] \) (radians)

Conversion

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)


Description of the Arccosine

Fundamentals

The arccosine (\( \arccos \) or \( \text{acos} \)) is the inverse function of the cosine function. It calculates the angle for a given cosine value. Acos(x) returns the corresponding angle in radians.

Mathematical Definition:

\(\displaystyle y = \arccos(x) \)

means

\(\displaystyle \cos(y) = x \)

Calculating the Cosine Value

The cosine is a trigonometric function related to a right triangle. In a right triangle, the cosine of an angle α is the ratio of the length of the adjacent side to the hypotenuse:

\(\displaystyle \cos(\alpha) = \frac{\text{Adjacent side}}{\text{Hypotenuse}} \)

Important: The cosine value is always between -1 and 1, and an angle of 90 degrees has a cosine value of 0.

Detailed Example

Example 1: Calculate Cosine Value

Given:

A right triangle with:

  • Adjacent side: \( b = 6 \)
  • Hypotenuse: \( c = 20 \)

Calculating the cosine:

\(\displaystyle \cos(\alpha) = \frac{6}{20} = 0.3 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \cos(\alpha) = 0.3 \)

In radians:

\(\displaystyle \alpha = \arccos(0.3) \approx 1.266 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha = \frac{1.266 \cdot 180°}{\pi} \approx 72.54° \)

Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \in [-1, 1] \)
  • Range: \( y \in [0, \pi] \) (radians) or \( [0°, 180°] \)
  • Monotonicity: Strictly monotonically decreasing
  • Special values:
    • \( \arccos(1) = 0 \)
    • \( \arccos(0) = \frac{\pi}{2} \approx 90° \)
    • \( \arccos(-1) = \pi \approx 180° \)
Practical Applications
  • Geometry: Angle calculation in triangles
  • Navigation: Course determination and positioning
  • Physics: Calculation of force angles
  • Computer graphics: 3D rotations and projections
  • Robotics: Joint angle calculations
  • Astronomy: Calculation of celestial coordinates
Important Note

Note the notation: In programming, inverse trigonometric functions are often called with the abbreviated forms asin, acos, atan. The notations sin−1(x), cos−1(x), tan−1(x) can be confusing as they conflict with the notation for reciprocal trigonometric functions.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxReLUSoftplusSwishStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree