ACos - Arccosine (Inverse Cosine)

Online calculator for calculating the angle to the cosine

Arccosine Calculator

Instructions

Enter the value of the cosine (between -1 and +1), select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arccosine - Overview

Value Range

The value of the argument must be between -1 and +1. The result is given in degrees (full circle = 360°) or radians (full circle = 2 · π).

Arccosine Function

Inverse cosine, scale in radians

Definition

The arccosine (Arccos or Acos) is the inverse function of the cosine function. It calculates the angle for a given cosine value.

\(\displaystyle y = \arccos(x) \Leftrightarrow \cos(y) = x \)

with \( x \in [-1, 1] \) and \( y \in [0, \pi] \) (radians)

Conversion

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)


Description of the Arccosine

Fundamentals

The arccosine (\( \arccos \) or \( \text{acos} \)) is the inverse function of the cosine function. It calculates the angle for a given cosine value. Acos(x) returns the corresponding angle in radians.

Mathematical Definition:

\(\displaystyle y = \arccos(x) \)

means

\(\displaystyle \cos(y) = x \)

Calculating the Cosine Value

The cosine is a trigonometric function related to a right triangle. In a right triangle, the cosine of an angle α is the ratio of the length of the adjacent side to the hypotenuse:

\(\displaystyle \cos(\alpha) = \frac{\text{Adjacent side}}{\text{Hypotenuse}} \)

Important: The cosine value is always between -1 and 1, and an angle of 90 degrees has a cosine value of 0.

Detailed Example

Example 1: Calculate Cosine Value

Given:

A right triangle with:

  • Adjacent side: \( b = 6 \)
  • Hypotenuse: \( c = 20 \)

Calculating the cosine:

\(\displaystyle \cos(\alpha) = \frac{6}{20} = 0.3 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \cos(\alpha) = 0.3 \)

In radians:

\(\displaystyle \alpha = \arccos(0.3) \approx 1.266 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha = \frac{1.266 \cdot 180°}{\pi} \approx 72.54° \)

Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \in [-1, 1] \)
  • Range: \( y \in [0, \pi] \) (radians) or \( [0°, 180°] \)
  • Monotonicity: Strictly monotonically decreasing
  • Special values:
    • \( \arccos(1) = 0 \)
    • \( \arccos(0) = \frac{\pi}{2} \approx 90° \)
    • \( \arccos(-1) = \pi \approx 180° \)
Practical Applications
  • Geometry: Angle calculation in triangles
  • Navigation: Course determination and positioning
  • Physics: Calculation of force angles
  • Computer graphics: 3D rotations and projections
  • Robotics: Joint angle calculations
  • Astronomy: Calculation of celestial coordinates
Important Note

Note the notation: In programming, inverse trigonometric functions are often called with the abbreviated forms asin, acos, atan. The notations sin−1(x), cos−1(x), tan−1(x) can be confusing as they conflict with the notation for reciprocal trigonometric functions.

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxReLUSoftplusSwishStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree