Sin - Calculate Sine

Online calculator for calculating the sine of an angle

Sine Calculator

Instructions

Enter the angle whose sine you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Sine

Sine - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π). The result always lies in the range from -1 to +1.

Sine Function

Sine, scale in radians

Definition in Triangle

The sine of an angle α corresponds to the ratio of the opposite side to the hypotenuse in a right triangle.

\(\displaystyle \sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{c} \)

Sine in Triangle
Important Values
  • \( \sin(0°) = 0 \)
  • \( \sin(30°) = 0.5 \)
  • \( \sin(45°) = \frac{\sqrt{2}}{2} \approx 0.707 \)
  • \( \sin(60°) = \frac{\sqrt{3}}{2} \approx 0.866 \)
  • \( \sin(90°) = 1 \)
  • \( \sin(180°) = 0 \)


Description of the Sine

Fundamentals

The sine is one of the fundamental trigonometric functions. In a right triangle, the sine of an angle α is the ratio of the opposite side to the hypotenuse.

Definition:

\(\displaystyle \sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}} \)

\(\displaystyle \sin(\alpha) = \frac{a}{c} \)

Properties

The sine function has several important properties:

  • Periodic: sin(α + 360°) = sin(α)
  • Odd function: sin(-α) = -sin(α)
  • Range: -1 ≤ sin(α) ≤ 1
  • Domain: All real numbers
Relationship to Cosine

Sine and cosine are closely related:

\(\displaystyle \sin(\alpha) = \cos(90° - \alpha) \)

\(\displaystyle \sin^2(\alpha) + \cos^2(\alpha) = 1 \)

Detailed Examples

Example 1: Calculate Sine

Given:

A right triangle with:

  • Opposite side (to α): \( a = 3 \text{ cm} \)
  • Hypotenuse: \( c = 5 \text{ cm} \)

Calculation:

\(\displaystyle \sin(\alpha) = \frac{3}{5} = 0.6 \)

To find the angle: \( \alpha = \arcsin(0.6) \approx 36.87° \)

Example 2: Known Angles

Important sine values:

\( \sin(0°) \) = 0
\( \sin(30°) \) = 0.5
\( \sin(45°) \) = \( \frac{\sqrt{2}}{2} \approx 0.707 \)
\( \sin(60°) \) = \( \frac{\sqrt{3}}{2} \approx 0.866 \)
\( \sin(90°) \) = 1
\( \sin(180°) \) = 0
Example 3: Practical Application

Task:

A ladder leans against a wall at an angle of 70° to the ground. The ladder is 5 m long. How high up the wall does the ladder reach?

Solution:

\(\displaystyle \text{Height} = 5 \cdot \sin(70°) \approx 5 \cdot 0.94 = 4.7 \text{ m} \)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 360° or 2π (radians)
  • Symmetry: Odd function: sin(-α) = -sin(α)
  • Zeros: At 0°, ±180°, ±360°, ...
  • Extrema:
    • Maximum: 1 at 90°, 450°, ...
    • Minimum: -1 at 270°, -90°, ...
  • Addition formulas:
    • \( \sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta \)
    • \( \sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta \)
Practical Applications
  • Physics: Oscillations and wave mechanics
  • Navigation: Course calculations and positioning
  • Engineering: Structural analysis and mechanics
  • Astronomy: Calculation of celestial positions
  • Music: Sound wave analysis
  • Signal processing: Fourier analysis
  • Computer graphics: Animations and rotations
  • Surveying: Height and distance measurements
Important Note

The sine is a periodic function with a period of 360° or 2π. This means that sin(α) = sin(α + 360°). The range always lies between -1 and +1, regardless of the input angle. The sine function is an odd function, i.e., point-symmetric about the origin: sin(-α) = -sin(α). Together with cosine, the sine satisfies the fundamental trigonometric identity: sin²(α) + cos²(α) = 1, known as the Pythagorean identity. The sine function is fundamental in describing periodic phenomena such as waves, oscillations, and circular motion.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree