ASin - Arcsine (Inverse Sine)

Online calculator for calculating the angle to a sine

Arcsine Calculator

Instructions

Enter the value of the sine (between -1 and +1), select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arcsine - Overview

Value Range

The value of the argument must be between -1 and +1.

  • Domain: x ∈ [-1, 1]
  • Range: [-π/2, π/2] in radians or [-90°, 90°]
Arcsine Function

Inverse sine, scale in radians

Definition

The arcsine (Arcsin or Asin) is the inverse function of the sine function. It calculates the angle for a given sine value.

\(\displaystyle y = \arcsin(x) \Leftrightarrow \sin(y) = x \)

with \( x \in [-1, 1] \) and \( y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \) (radians)

Conversion

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)


Description of the Arcsine

Fundamentals

The arcsine (\( \arcsin \) or \( \text{asin} \)) is the inverse function of the sine function. While the sine assigns a value between -1 and 1 to an angle, the arcsine assigns values between -1 and 1 to their corresponding angles again.

Mathematical Definition:

\(\displaystyle y = \arcsin(x) \)

means

\(\displaystyle \sin(y) = x \)

Calculating the Sine Value

The sine is a trigonometric function related to a right triangle. In a right triangle, the sine of an angle α is the ratio of the length of the opposite side to the hypotenuse:

\(\displaystyle \sin(\alpha) = \frac{\text{Opposite side}}{\text{Hypotenuse}} \)

Important: The sine value is always between -1 and 1, and an angle of 0 degrees has a sine value of 0.

Detailed Examples

Example 1: Calculate Sine Value

Given:

A right triangle with:

  • Opposite side: a = 3
  • Hypotenuse: c = 6

Calculating the sine:

\(\displaystyle \sin(\alpha) = \frac{3}{6} = 0.5 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \sin(\alpha) = 0.5 \)

In radians:

\(\displaystyle \alpha = \arcsin(0.5) = \frac{\pi}{6} \approx 0.524 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha = 30° \)

Verification: sin(30°) = 0.5 ✓

Example 3: Common Values

Important sine values:

  • \( \arcsin(0) = 0° = 0 \text{ rad} \)
  • \( \arcsin(0.5) = 30° = \frac{\pi}{6} \text{ rad} \)
  • \( \arcsin(\frac{\sqrt{2}}{2}) = 45° = \frac{\pi}{4} \text{ rad} \)
  • \( \arcsin(\frac{\sqrt{3}}{2}) = 60° = \frac{\pi}{3} \text{ rad} \)
  • \( \arcsin(1) = 90° = \frac{\pi}{2} \text{ rad} \)
Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \in [-1, 1] \)
  • Range: \( y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \) (radians) or \( [-90°, 90°] \)
  • Monotonicity: Strictly monotonically increasing
  • Symmetry: Odd function: \( \arcsin(-x) = -\arcsin(x) \)
  • Special values:
    • \( \arcsin(0) = 0 \)
    • \( \arcsin(1) = \frac{\pi}{2} \approx 90° \)
    • \( \arcsin(-1) = -\frac{\pi}{2} \approx -90° \)
Practical Applications
  • Geometry: Angle calculation in triangles
  • Navigation: Course determination and positioning
  • Physics: Projectile motion and wave analysis
  • Computer graphics: 3D rotations and projections
  • Robotics: Joint angle calculations
  • Astronomy: Calculation of celestial coordinates
  • Engineering: Structural analysis and design
Relationship to Other Functions

Relationship to arccosine:

\(\displaystyle \arcsin(x) + \arccos(x) = \frac{\pi}{2} \)

Derivative:

\(\displaystyle \frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}} \)

Important Note

Notation: In programming and mathematical software, the arcsine function is typically called asin or arcsin. The notation sin⁻¹(x) can be confusing as it might be mistaken for the reciprocal function (1/sin(x)), which is actually the cosecant (csc(x)).

Multiple solutions: Since the sine function is periodic, there are infinitely many angles with the same sine value. The arcsine function returns the principal value in the range [-90°, 90°] or [-π/2, π/2].





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree