Sec - Calculate Secant

Online calculator for calculating the secant of an angle

Secant Calculator

Instructions

Enter the angle whose secant you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Secant

Secant - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π).

Note: The secant is undefined at 90°, 270° (or π/2, 3π/2 in radians) where cos(α) = 0.

Secant Function

Secant, scale in radians

Definition in Triangle

The secant is the reciprocal of the cosine function. In a right triangle, it is the ratio of the hypotenuse to the adjacent side.

\(\displaystyle \sec(\alpha) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{c}{b} = \frac{1}{\cos(\alpha)} \)

Secant in Triangle
Important Values
  • \( \sec(0°) = 1 \)
  • \( \sec(30°) = \frac{2}{\sqrt{3}} \approx 1.155 \)
  • \( \sec(45°) = \sqrt{2} \approx 1.414 \)
  • \( \sec(60°) = 2 \)
  • \( \sec(90°) = \) undefined (∞)
  • \( \sec(180°) = -1 \)


Description of the Secant

Fundamentals

The secant (sec) is one of the six basic trigonometric functions. It is the reciprocal of the cosine function. In a right triangle, the secant of an angle α is the ratio of the hypotenuse to the adjacent side.

Definition:

\(\displaystyle \sec(\alpha) = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{c}{b} \)

\(\displaystyle \sec(\alpha) = \frac{1}{\cos(\alpha)} \)

Properties

The secant function has several important properties:

  • Periodic: sec(α + 360°) = sec(α)
  • Even function: sec(-α) = sec(α)
  • Undefined: At 90°, 270°, ... (where cos(α) = 0)
  • Range: (-∞, -1] ∪ [1, +∞)
  • Domain: All real numbers except 90° + n·180° (n integer)
Relationship to Other Functions

The secant is related to other trigonometric functions:

\(\displaystyle \sec(\alpha) = \frac{1}{\cos(\alpha)} \)

\(\displaystyle \cos(\alpha) = \frac{1}{\sec(\alpha)} \)

\(\displaystyle 1 + \tan^2(\alpha) = \sec^2(\alpha) \)

Detailed Examples

Example 1: Calculate Secant

Given:

A right triangle with:

  • Hypotenuse: \( c = 10 \text{ cm} \)
  • Adjacent side: \( b = 8 \text{ cm} \)

Calculation:

\(\displaystyle \sec(\alpha) = \frac{10}{8} = 1.25 \)

To find the angle: \( \alpha = \arccos\left(\frac{8}{10}\right) \approx 36.87° \)

Example 2: Known Angles

Important secant values:

\( \sec(0°) \) = 1
\( \sec(30°) \) = \( \frac{2}{\sqrt{3}} \approx 1.155 \)
\( \sec(45°) \) = \( \sqrt{2} \approx 1.414 \)
\( \sec(60°) \) = 2
\( \sec(120°) \) = -2
\( \sec(180°) \) = -1
Example 3: Using Cosine

Task:

If \( \cos(\alpha) = 0.5 \), what is \( \sec(\alpha) \)?

Solution:

\(\displaystyle \sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{1}{0.5} = 2 \)

This corresponds to α = 60° (or π/3 rad)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 360° or 2π (radians)
  • Symmetry: Even function: sec(-α) = sec(α)
  • Asymptotes: Vertical at 90°, 270°, ...
  • Minimum value: |sec(α)| ≥ 1
  • Reciprocal: sec(α) = 1/cos(α)
  • Pythagorean identity: 1 + tan²(α) = sec²(α)
  • Relationship to arccosine:
    • \( \text{arcsec}(x) = \arccos\left(\frac{1}{x}\right) \)
Practical Applications
  • Physics: Wave analysis and optics
  • Engineering: Structural mechanics calculations
  • Navigation: Distance and bearing calculations
  • Astronomy: Angular measurements
  • Surveying: Slope and grade calculations
  • Cryptography: Mathematical algorithms
  • Computer graphics: 3D transformations
  • Mathematics: Solving trigonometric equations
Important Note

The secant function is undefined at angles where the cosine equals zero (90°, 270°, ... or π/2, 3π/2, ...). At these points, the function approaches positive or negative infinity. The secant is the reciprocal of the cosine: sec(α) = 1/cos(α). Since |cos(α)| ≤ 1, the absolute value of the secant is always ≥ 1: |sec(α)| ≥ 1. The function has a period of 360° (or 2π radians), meaning sec(α + 360°) = sec(α). The secant function is particularly useful in calculus and in solving trigonometric equations, and it plays an important role in the Pythagorean identity: 1 + tan²(α) = sec²(α).





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree