Cos - Calculate Cosine

Online calculator for calculating the cosine of an angle

Cosine Calculator

Instructions

Enter the angle whose cosine you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Cosine

Cosine - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π). The result always lies in the range from -1 to +1.

Cosine Function

Cosine, scale in radians

Definition in Triangle

The cosine of an angle α corresponds to the ratio of the adjacent side to the hypotenuse in a right triangle.

\(\displaystyle \cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{b}{c} \)

Cosine in Triangle
Important Values
  • \( \cos(0°) = 1 \)
  • \( \cos(30°) = \frac{\sqrt{3}}{2} \approx 0.866 \)
  • \( \cos(45°) = \frac{\sqrt{2}}{2} \approx 0.707 \)
  • \( \cos(60°) = 0.5 \)
  • \( \cos(90°) = 0 \)
  • \( \cos(180°) = -1 \)


Description of the Cosine

Fundamentals

The cosine is one of the fundamental trigonometric functions. In a right triangle, the cosine of an angle α is the ratio of the adjacent side to the hypotenuse.

Definition:

\(\displaystyle \cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}} \)

\(\displaystyle \cos(\alpha) = \frac{b}{c} \)

Properties

The cosine function has several important properties:

  • Periodic: cos(α + 360°) = cos(α)
  • Even function: cos(-α) = cos(α)
  • Range: -1 ≤ cos(α) ≤ 1
  • Domain: All real numbers
Relationship to Sine

Cosine and sine are closely related:

\(\displaystyle \cos(\alpha) = \sin(90° - \alpha) \)

\(\displaystyle \sin^2(\alpha) + \cos^2(\alpha) = 1 \)

Detailed Examples

Example 1: Calculate Cosine

Given:

A right triangle with:

  • Adjacent side (to α): \( b = 8 \text{ cm} \)
  • Hypotenuse: \( c = 10 \text{ cm} \)

Calculation:

\(\displaystyle \cos(\alpha) = \frac{8}{10} = 0.8 \)

To find the angle: \( \alpha = \arccos(0.8) \approx 36.87° \)

Example 2: Known Angles

Important cosine values:

\( \cos(0°) \) = 1
\( \cos(30°) \) = \( \frac{\sqrt{3}}{2} \approx 0.866 \)
\( \cos(45°) \) = \( \frac{\sqrt{2}}{2} \approx 0.707 \)
\( \cos(60°) \) = 0.5
\( \cos(90°) \) = 0
\( \cos(180°) \) = -1
Example 3: Practical Application

Task:

A ladder leans against a wall at an angle of 60°. The ladder is 5 m long. How far is the base of the ladder from the wall?

Solution:

\(\displaystyle \text{Distance} = 5 \cdot \cos(60°) = 5 \cdot 0.5 = 2.5 \text{ m} \)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 360° or 2π (radians)
  • Symmetry: Even function: cos(-α) = cos(α)
  • Zeros: At 90° + n·180° (n integer)
  • Extrema:
    • Maximum: 1 at 0°, 360°, 720°, ...
    • Minimum: -1 at 180°, 540°, ...
  • Addition formulas:
    • \( \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \)
    • \( \cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta \)
Practical Applications
  • Physics: Calculation of force components
  • Navigation: Course calculations and positioning
  • Civil engineering: Static calculations and structures
  • Astronomy: Calculation of celestial positions
  • Computer graphics: 3D rotations and transformations
  • Electrical engineering: AC current calculations
  • Mechanical engineering: Motion analysis and kinematics
  • Surveying: Distance and height calculations
Important Note

The cosine is a periodic function with a period of 360° or 2π. This means that cos(α) = cos(α + 360°). The range always lies between -1 and +1, regardless of the input angle. The cosine function is an even function, i.e., symmetric about the y-axis: cos(-α) = cos(α). Together with sine, the cosine satisfies the fundamental trigonometric identity: sin²(α) + cos²(α) = 1, known as the Pythagorean identity.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree