Csc - Calculate Cosecant

Online calculator for calculating the cosecant of an angle

Cosecant Calculator

Instructions

Enter the angle whose cosecant you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Cosecant

Cosecant - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π).

Note: The cosecant is undefined at 0°, 180°, 360° (or 0, π, 2π in radians) where sin(α) = 0.

Cosecant Function

Cosecant, scale in radians

Definition in Triangle

The cosecant is the reciprocal of the sine function. In a right triangle, it is the ratio of the hypotenuse to the opposite side.

\(\displaystyle \csc(\alpha) = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{c}{a} = \frac{1}{\sin(\alpha)} \)

Cosecant in Triangle
Important Values
  • \( \csc(30°) = 2 \)
  • \( \csc(45°) = \sqrt{2} \approx 1.414 \)
  • \( \csc(60°) = \frac{2}{\sqrt{3}} \approx 1.155 \)
  • \( \csc(90°) = 1 \)
  • \( \csc(0°) = \) undefined (∞)
  • \( \csc(180°) = \) undefined (∞)


Description of the Cosecant

Fundamentals

The cosecant (csc) is one of the six basic trigonometric functions. It is the reciprocal of the sine function. In a right triangle, the cosecant of an angle α is the ratio of the hypotenuse to the opposite side.

Definition:

\(\displaystyle \csc(\alpha) = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{c}{a} \)

\(\displaystyle \csc(\alpha) = \frac{1}{\sin(\alpha)} \)

Properties

The cosecant function has several important properties:

  • Periodic: csc(α + 360°) = csc(α)
  • Odd function: csc(-α) = -csc(α)
  • Undefined: At 0°, ±180°, ±360°, ... (where sin(α) = 0)
  • Range: (-∞, -1] ∪ [1, +∞)
  • Domain: All real numbers except multiples of 180° (or π)
Relationship to Other Functions

The cosecant is related to other trigonometric functions:

\(\displaystyle \csc(\alpha) = \frac{1}{\sin(\alpha)} \)

\(\displaystyle \sin(\alpha) = \frac{1}{\csc(\alpha)} \)

\(\displaystyle 1 + \cot^2(\alpha) = \csc^2(\alpha) \)

Detailed Examples

Example 1: Calculate Cosecant

Given:

A right triangle with:

  • Hypotenuse: \( c = 10 \text{ cm} \)
  • Opposite side: \( a = 6 \text{ cm} \)

Calculation:

\(\displaystyle \csc(\alpha) = \frac{10}{6} \approx 1.667 \)

To find the angle: \( \alpha = \arcsin\left(\frac{6}{10}\right) \approx 36.87° \)

Example 2: Known Angles

Important cosecant values:

\( \csc(30°) \) = 2
\( \csc(45°) \) = \( \sqrt{2} \approx 1.414 \)
\( \csc(60°) \) = \( \frac{2}{\sqrt{3}} \approx 1.155 \)
\( \csc(90°) \) = 1
\( \csc(120°) \) = \( \frac{2}{\sqrt{3}} \approx 1.155 \)
\( \csc(150°) \) = 2
Example 3: Using Sine

Task:

If \( \sin(\alpha) = 0.5 \), what is \( \csc(\alpha) \)?

Solution:

\(\displaystyle \csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{1}{0.5} = 2 \)

This corresponds to α = 30° (or π/6 rad)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 360° or 2π (radians)
  • Symmetry: Odd function: csc(-α) = -csc(α)
  • Asymptotes: Vertical at 0°, ±180°, ±360°, ...
  • Minimum value: |csc(α)| ≥ 1
  • Reciprocal: csc(α) = 1/sin(α)
  • Pythagorean identity: 1 + cot²(α) = csc²(α)
  • Relationship to arcsine:
    • \( \text{arccsc}(x) = \arcsin\left(\frac{1}{x}\right) \)
Practical Applications
  • Physics: Wave mechanics and oscillations
  • Engineering: Structural analysis
  • Optics: Light refraction calculations
  • Navigation: Distance and bearing calculations
  • Astronomy: Celestial coordinate systems
  • Signal processing: Amplitude analysis
  • Mathematics: Solving trigonometric equations
  • Computer graphics: 3D rendering and projections
Important Note

The cosecant function is undefined at angles where the sine equals zero (0°, ±180°, ±360°, ... or 0, ±π, ±2π, ...). At these points, the function approaches positive or negative infinity. The cosecant is the reciprocal of the sine: csc(α) = 1/sin(α). Since |sin(α)| ≤ 1, the absolute value of the cosecant is always ≥ 1: |csc(α)| ≥ 1. The function has a period of 360° (or 2π radians), meaning csc(α + 360°) = csc(α). The cosecant function is particularly useful in solving trigonometric equations and in applications involving wave mechanics and oscillations.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree