ACot - Arccotangent (Inverse Cotangent)

Online calculator for calculating the angle to the cotangent

Arccotangent Calculator

Instructions

Enter the value of the cotangent, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Angle

Arccotangent - Overview

Value Range

The arccotangent accepts all real numbers as input.

  • Domain: All real numbers (-∞, +∞)
  • Range: (0, π) in radians or (0°, 180°)
Arccotangent Function

Inverse cotangent, scale in radians

Definition

The arccotangent (arccot, acot, or cot⁻¹) is the inverse function of the cotangent function.

\(\displaystyle y = \text{arccot}(x) \Leftrightarrow \cot(y) = x \)

with \( x \in \mathbb{R} \) and \( y \in (0, \pi) \)

Relationship

Relationship to arctangent:

\(\displaystyle \text{arccot}(x) = \frac{\pi}{2} - \arctan(x) \)


Description of the Arccotangent

Fundamentals

The arccotangent (arccot, acot, or cot⁻¹) is the inverse function of the cotangent function. It calculates the angle for a given cotangent value. The function is used in mathematics, engineering, physics, and geometry to find angles based on trigonometric ratios.

Mathematical Definition:

\(\displaystyle y = \text{arccot}(x) \)

means

\(\displaystyle \cot(y) = x \)

Understanding Cotangent

In a right triangle, the cotangent of an angle α is the ratio of the adjacent side to the opposite side:

\(\displaystyle \cot(\alpha) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{b}{a} \)

Also: \(\displaystyle \cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{\cos(\alpha)}{\sin(\alpha)} \)

Important: The cotangent is the reciprocal of the tangent function.

Detailed Examples

Example 1: Calculate Cotangent Value

Given:

A right triangle with:

  • Adjacent side: \( b = 4 \)
  • Opposite side: \( a = 3 \)

Calculating the cotangent:

\(\displaystyle \cot(\alpha) = \frac{4}{3} \approx 1.333 \)

Example 2: Calculate Angle

Task:

Calculate the angle α for \( \cot(\alpha) = 1.333 \)

In radians:

\(\displaystyle \alpha = \text{arccot}(1.333) \approx 0.6435 \text{ rad} \)

Conversion to degrees:

\(\displaystyle \alpha = \frac{0.6435 \cdot 180°}{\pi} \approx 36.87° \)

Example 3: Special Values

Common cotangent values:

  • \( \text{arccot}(1) = 45° = \frac{\pi}{4} \text{ rad} \)
  • \( \text{arccot}(0) = 90° = \frac{\pi}{2} \text{ rad} \)
  • \( \text{arccot}(\sqrt{3}) = 30° = \frac{\pi}{6} \text{ rad} \)
Conversion Formula

From radians to degrees:

\(\displaystyle \text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi} \)

Properties
  • Domain: \( x \in \mathbb{R} \) (all real numbers)
  • Range: \( y \in (0, \pi) \) (radians) or \( (0°, 180°) \)
  • Monotonicity: Strictly monotonically decreasing
  • Asymptotes: Horizontal asymptotes at y = 0 and y = π
  • Special values:
    • \( \text{arccot}(\infty) = 0 \)
    • \( \text{arccot}(1) = \frac{\pi}{4} \approx 45° \)
    • \( \text{arccot}(0) = \frac{\pi}{2} \approx 90° \)
    • \( \text{arccot}(-\infty) = \pi \approx 180° \)
Practical Applications
  • Geometry: Angle calculations in triangles
  • Engineering: Structural analysis and design
  • Physics: Wave analysis and optics
  • Navigation: Direction and bearing calculations
  • Computer graphics: 3D transformations
  • Signal processing: Phase angle calculations
  • Surveying: Land measurement and mapping
Relationships to Other Functions

Tangent relationship:

\(\displaystyle \tan(\alpha) = \frac{1}{\cot(\alpha)} \)

\(\displaystyle \cot(\alpha) = \frac{1}{\tan(\alpha)} \)

Arctangent relationship:

\(\displaystyle \text{arccot}(x) = \frac{\pi}{2} - \arctan(x) \)

\(\displaystyle \text{arccot}(x) = \arctan\left(\frac{1}{x}\right) \text{ for } x > 0 \)

Cotangent in Terms of Sine and Cosine

\(\displaystyle \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} \)

This shows the cotangent as the ratio of cosine to sine

Important Note

Notation: The notation cot⁻¹(x) can be confusing as it might be mistaken for the reciprocal function (1/cot(x)). In programming and mathematical software, the functions are typically called acot or arccot to avoid this confusion.

Programming: Not all programming languages have a built-in arccotangent function. It can be calculated using: acot(x) = atan(1/x) for positive x, with appropriate adjustments for negative values.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree