Cot - Calculate Cotangent

Online calculator for calculating the cotangent of an angle

Cotangent Calculator

Instructions

Enter the angle whose cotangent you want to calculate, select the unit of measure (degrees or radians) and click Calculate.

Input
Result
Cotangent

Cotangent - Overview

Value Range

The angle is given in degrees (full circle = 360°) or radians (full circle = 2·π).

Note: The cotangent is undefined at 0°, 180°, 360° (or 0, π, 2π in radians) where sin(α) = 0.

Cotangent Function

Cotangent, scale in degrees

Definition in Triangle

The cotangent is the reciprocal of the tangent. It corresponds to the ratio of the adjacent side to the opposite side in a right triangle.

\(\displaystyle \cot(\alpha) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{b}{a} = \frac{1}{\tan(\alpha)} \)

Cotangent in Triangle
Important Values
  • \( \cot(30°) = \sqrt{3} \approx 1.732 \)
  • \( \cot(45°) = 1 \)
  • \( \cot(60°) = \frac{1}{\sqrt{3}} \approx 0.577 \)
  • \( \cot(90°) = 0 \)
  • \( \cot(0°) = \) undefined (∞)
  • \( \cot(180°) = \) undefined (∞)


Description of the Cotangent

Fundamentals

The cotangent is one of the six basic trigonometric functions. It is the reciprocal of the tangent function. In a right triangle, the cotangent of an angle α is the ratio of the adjacent side to the opposite side.

Definition:

\(\displaystyle \cot(\alpha) = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{b}{a} \)

\(\displaystyle \cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{\cos(\alpha)}{\sin(\alpha)} \)

Properties

The cotangent function has several important properties:

  • Periodic: cot(α + 180°) = cot(α)
  • Odd function: cot(-α) = -cot(α)
  • Undefined: At 0°, ±180°, ±360°, ... (where sin(α) = 0)
  • Range: All real numbers (-∞, +∞)
  • Domain: All real numbers except multiples of 180° (or π)
Relationship to Other Functions

The cotangent is related to other trigonometric functions:

\(\displaystyle \cot(\alpha) = \frac{1}{\tan(\alpha)} \)

\(\displaystyle \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} \)

\(\displaystyle 1 + \cot^2(\alpha) = \csc^2(\alpha) \)

Detailed Examples

Example 1: Calculate Cotangent

Given:

A right triangle with:

  • Adjacent side (to α): \( b = 4 \text{ cm} \)
  • Opposite side: \( a = 3 \text{ cm} \)

Calculation:

\(\displaystyle \cot(\alpha) = \frac{4}{3} \approx 1.333 \)

To find the angle: \( \alpha = \text{arccot}(1.333) \approx 36.87° \)

Example 2: Known Angles

Important cotangent values:

\( \cot(30°) \) = \( \sqrt{3} \approx 1.732 \)
\( \cot(45°) \) = 1
\( \cot(60°) \) = \( \frac{1}{\sqrt{3}} \approx 0.577 \)
\( \cot(90°) \) = 0
\( \cot(120°) \) = \( -\frac{1}{\sqrt{3}} \approx -0.577 \)
\( \cot(135°) \) = -1
Example 3: Using Tangent

Task:

If \( \tan(\alpha) = 2 \), what is \( \cot(\alpha) \)?

Solution:

\(\displaystyle \cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{1}{2} = 0.5 \)

Conversion

From degrees to radians:

\(\displaystyle \text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°} \)

Mathematical Properties
  • Period: 180° or π (radians)
  • Symmetry: Odd function: cot(-α) = -cot(α)
  • Asymptotes: Vertical at 0°, ±180°, ±360°, ...
  • Zeros: At 90° + n·180° (n integer)
  • Reciprocal: cot(α) = 1/tan(α)
  • Pythagorean identity: 1 + cot²(α) = csc²(α)
  • Addition formula:
    • \( \cot(\alpha + \beta) = \frac{\cot\alpha\cot\beta - 1}{\cot\alpha + \cot\beta} \)
Practical Applications
  • Engineering: Slope and gradient calculations
  • Physics: Wave mechanics and oscillations
  • Surveying: Angle and distance measurements
  • Navigation: Course and bearing calculations
  • Architecture: Roof pitch and ramp angles
  • Astronomy: Celestial coordinate calculations
  • Computer graphics: Perspective projections
  • Signal processing: Phase relationships
Important Note

The cotangent function is undefined at angles where the sine equals zero (0°, ±180°, ±360°, ... or 0, ±π, ±2π, ...). At these points, the function approaches positive or negative infinity. The cotangent is the reciprocal of the tangent: cot(α) = 1/tan(α) = cos(α)/sin(α). The function has a period of 180° (or π radians), meaning cot(α + 180°) = cot(α). Unlike sine and cosine, the cotangent can take any real value from -∞ to +∞, making it useful in calculations involving slopes and gradients.





IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree